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Abstract

We consider the problem of computing blow-up solutions of chemotaxis systems, or the so-called chemotactic col-

lapse. In two spatial dimensions, such solutions can have approximate self-similar behaviour, which can be very chal-

lenging to verify in numerical simulations [cf. Betterton and Brenner, Collapsing bacterial cylinders, Phys. Rev. E 64

(2001) 061904]. We analyse a dynamic (scale-invariant) remeshing method which performs spatial mesh movement

based upon equidistribution. Using a suitably chosen monitor function, the numerical solution resolves the fine detail

in the asymptotic solution structure, such that the computations are seen to be fully consistent with the asymptotic

description of the collapse phenomenon given by Herrero and Velázquez [Singularity patterns in a chemotaxis model,

Math. Ann. 306 (1996) 583–623]. We believe that the methods we construct are ideally suited to a large number of prob-

lems in mathematical biology for which collapse phenomena are expected.
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1. Introduction

There is currently considerable interest in the modelling and numerical solution of systems of reaction

diffusion problems arising in many applications areas of the physical sciences. One important class, repre-
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sentative of the complexities which can arise, involve problems in mathematical biology where living sys-

tems respond to external stimuli. There are various basic types of such responses, described using the suffix

t-axis (Greek for ‘‘arrange, turning’’). A typical one, and the one studied in this paper, is a chemotaxis prob-

lem [3–5] where the t-axis is triggered by chemical gradients.

The resulting mathematical models are typically nonlinear systems of reaction diffusion partial differen-
tial equations (PDEs) which pose a number of analytical and computational challenges. First, analysis is

complicated by the fact that it is a system of PDEs. There is often only a formal analysis or prediction

of solution behaviour, and one wishes to approximate the solution numerically to confirm theoretical re-

sults. Second, the solution behaviour itself can be complicated. A particular feature of this is a blow-up

in one or more solution components in a finite time T, generally referred to as a collapse, which occurs over

a diminishing length scale. Collapse is observed in the chemotaxis problem as well as in many other physical

systems such as the closely related problem of gravitational collapse studied in [6–9].

Collapse-type phenomena are nontrivial to compute under the best of conditions, and a very careful
numerical approach is required to correctly resolve the fine structure of the behaviour and to avoid mislead-

ing answers. For the physical situations of interest, the solution can be particularly complex, with subtle

scaling relationships between time and space leading to only approximately self-similar structure.

Exact blow-up solutions in one spatial dimension (1D) were studied by Levine and Sleeman [10] for a

class of chemotaxis equations without chemical diffusion and without chemical decay. They showed the

blow-up profile to be self-similar, with the cell concentration tending to a Dirac-delta with ‘‘height’’ inver-

sely proportional to the time to blow-up.

The general chemotaxis system is a problem with surprisingly delicate behaviour in two spatial dimen-
sions (2D). Its solutions can exhibit local collapse for which the behaviour is believed to be not strictly self-

similar, i.e., it does not obey the underlying scaling laws of the PDE. Moreover, the structure away from the

blow-up point is complicated, with blow-up in time and space not following a strict power law, but obeying

an approximate power law with a logarithmic correction. An asymptotic description of this behaviour is

given in [2], and it is shown in [11] that this blow-up mechanism is stable. However, in [2,11] there is no

proof of the uniqueness of this blow-up behaviour, and in [1] some numerical evidence is presented which

indicates that other types of blow-up might be possible. In three spatial dimensions (3D) the situation is

much clearer, with the collapse occurring in a self-similar manner, obeying a strict power law, and numer-
ical verification of this solution behaviour fairly straightforward to perform.

Capturing the solution behaviour precisely is a particularly challenging numerical problem in 2D, as

exemplified by the numerical results (based on a static regridding approach) presented in [1] which had

some anomalies that left some unresolved issues, suggesting to the authors of this paper that further re-

search into the numerical approximation is needed. This forms the background for our paper. We shall

use a high order moving mesh method to obtain a careful resolution of the collapse behaviour. The results

give support to the conjecture that the asymptotic behaviour derived in [2] is unique and globally attracting.

Our approach is a development of the one described in [12] in which a semi-discrete dynamic regridding
method is used together with a high order (in both space and time) resolution of the solution. Central to this

procedure is the allocation of the mesh points through the solution of so-called moving mesh PDEs, or

MMPDEs [13]. This is done by equidistributing a monitor function chosen in such a manner that any scal-

ing laws which are present in the solution should be inherited in the numerical method, but these scaling

laws are not imposed a-priori on the method. (The danger of the latter is that it can potentially lead to mis-

leading observations of self-similar behaviour which may not be present in the underlying problem).

For problems with true self-similar blow-up, there is a region close to the origin in which all of the blow-

up occurs in a similar manner, and the solution matches smoothly onto an exterior region. For such prob-
lems general adaptive numerical methods based upon the use of MMPDEs are developed in [14,15], and a

general theory describing their performance is possible [16]. But for the non-self-similar case treated here, it

is a much more delicate task to assure that the proper solution behaviour is computed. Whilst the broad
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outline of the methods described in [12] is still applicable, the choice of the correct monitor function leads to

a delicate play-off between the requirements of using a fine enough mesh to resolve the solution and avoid-

ing stiffness in solving the resulting system of ordinary differential equations (ODEs). However the results

obtained with this method compare very well with the asymptotic results of [2], giving us confidence in

using the MMPDE based approach for a wider range of collapse problems.
The outline of the paper is as follows. In Section 2, we describe the chemotaxis system and outline the

asymptotic theory of Herrero and Velázquez [2]. In Section 3, we outline the numerical method and give

the results of the numerical computations. These lend strong support to the correctness of the asymptotic

theory in [2] which we examine through a careful series of comparisons. In Section 4, we provide more anal-

ysis of the numerical method, in particular showing how the monitor function determining the mesh is de-

rived. Section 5 contains some more detailed numerical results related to the mesh motion. Finally, in

Section 6, we draw some conclusions and indicate how our approach could be used for other collapse

problems.
2. The chemotaxis system

2.1. The equations

The non-dimensional chemotaxis equations have the form
ut ¼ r2u� vr � ðurvÞ;
vt ¼ r2vþ u� v;

(
ð1Þ
where we take r 2 X = {r:jrj 6 R}, v = 8 for convenience (see [2]), and enforce Neumann boundary condi-

tions for u and v on oX. This model represents the evolution of a cell density u(r,t), in the presence of a
chemical substrate v(r,t) [4,5,17]. The substrate, or chemo-attractant, is produced by the cells and in turn

attracts cells via the cross diffusion term with chemotactic coefficient v. In this process, the total mass of

the cell population given by
Z
X
u dr ð2Þ
is constant throughout the evolution.

The overall effect of the cross diffusion term is to create cell aggregates that may collapse in a finite time

T so that both u and v become unbounded in this limit. Collapse is generally radially symmetric, at least

locally, so without loss of generality we assume that the solutions u and v are radially symmetric and be-

come unbounded at the origin r = 0.

Some authors [18–25] consider the related problem of taking vt = 0 [25]. It is not clear to us when the

solution to this simpler problem can be used to provide a solution to the general problem (1), although this

term can be shown to be formally small in a certain asymptotic limit [18,24]. It is certainly true that v
evolves much more slowly than u. The strength of the numerical approach we describe is that in principle

it can solve any number of coupled physical PDEs in their general form.

Our investigation will be mainly concentrated on the case where the dimension of the space X is d = 2,

for which the blow-up is not strictly self-similar. For d = 3, there is also a set of blow-up profiles (concen-

trated at the origin) which are strictly self-similar and obey a simple power law [23]. We also compute the

solution for this simpler case using the techniques in [12]. Any such self-similar solution corresponds to a

rescaled function which is constant in rescaled time. The solution behaviour for d = 2 is much more subtle,
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and must be determined in this case by using centre-manifold type arguments [2]. For the remainder of the

paper we consider the case d = 2 unless stated otherwise.
2.2. A description of the blow-up solution

The asymptotic form of the solution of (1) has been analysed in some detail by Herrero and Veláz-

quez [2,11]. In particular, a structure for the blow-up profile is proposed which is shown to be locally

stable. No uniqueness (or global stability) is established. While an alternative asymptotic form for the

collapse has been proposed in [1], our numerical computations are strongly supportive of the results

given by [2], and hence we restrict our discussion to this latter form. As is usual with most descriptions

of blow-up phenomena where u(0,t) ! 1 as t! T, we see two different descriptions of the form of the

solution, an inner or core region where it evolves rapidly in both time and space, and an outer region

where it evolves to a (singular) limiting profile. A successful numerical method must capture both forms
of behaviour.

At the blow-up time t = T, u(r,t) takes the limiting form
uðr; T Þ ¼ pdðrÞ þ wðrÞ; ð3Þ
where r = jxj, d is the R2 delta function, and w(r) is a singular function at r = 0 [2]. It is important to men-

tion that the limiting form (3) is only valid near the blow-up region (where boundary effects can be

neglected).
Crucial to the subsequent analysis are the facts that (i) w(r) is integrable in R2 and (ii) w(r)1/2 is integrable

in R1. Observe that u(0,T) = 1.

The time variation of u(0,t) close to the blow-up time is complicated when d = 2. The asymptotic struc-

ture of a particular form of this solution was studied by Herrero and Velázquez [2,11]. For their singular

solution, in the limit of (T � t)! 0,
c � uð0; tÞ ¼ L�2 1þ O
logðsÞffiffiffi

s
p

� �� �
; ð4Þ
where
s ¼ � logðT � tÞ:

In this expression, L(t) is a natural length scale for the problem given by
LðtÞ ¼ KðT � tÞ1=2 e�jlogðT�tÞj1=2=
ffiffi
2

p
1þ O

logðsÞffiffiffi
s

p
� �� �

¼ KðT � tÞ0:5þa
1þ O

logðsÞffiffiffi
s

p
� �� �

; ð5Þ
where
a ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 j logðT � tÞ j

p
ð6Þ
and K is a constant.
The most significant feature of this description of blow-up is that u(0,t) and L(t) do not obey an asymp-

totic power law. However, testing this conclusion is difficult numerically because of the slow convergence of

the asymptotic series. In particular, the error term is proportional to logðsÞ=
ffiffiffi
s

p
. As s ¼ � logðT � tÞ; 1=

ffiffiffi
s

p

is proportional to 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðuð0; tÞÞ

p
, so for this to be small, we must take u(0,t) to be very large. This is pre-

cisely the challenge faced when doing such computations and which we address in this paper. In particular,

we are able to compute solutions for which u(0,t) � 1020 so that 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðuð0; tÞÞ

p
� 0:14. Whilst not as small

as we would like, this error bound is small enough that the computational results, and in particular the
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agreement between the numerically computed values and the leading order asymptotic formulae, indicate

that the asymptotic results are sharp.

In the case of true self-similar blow-up (where the solution is invariant under the scaling laws which ap-

ply to the differential equation) we expect to see the simpler power law relation
uð0; tÞ � ðT � tÞ�1
; LðtÞ � ðT � tÞ0:5:
Only if we formally set a = 0 into the formula (5) do we see this form of behaviour. We do observe such

self-similar behaviour in the evolution of the solutions of the chemotaxis equations in three dimensions.

Limiting power law behaviour is also observed in the computations described in [1].

2.2.1. The core region

Herrero and Velázquez [2,11] analyse the spatial structure close to blow-up by looking at the centre-

manifold of the solution expressed in a set of rescaled coordinates derived from the canonical symmetry

reduction of the original equation. By doing this they obtain rigorous results concerning the limiting behav-

iour of a class of blow-up solutions. In particular, it is shown in these papers that in the core region close to

the blow-up point at the origin the function u(r,t) takes the form
uðr; tÞ ¼ c�uðc1=2rÞ � c

ð1þ cr2Þ2
1þ O

logðsÞffiffiffi
s

p
� �� �

; ð7Þ
where as before c = u(0,t). The form of u(r,t) is illustrated in Fig. 1. The convergence to this asymptotic

profile is also shown in these papers to be uniform on sets jrj 6 L(t) given in (5). (In this context, where

functions develop singularities in finite time, uniform convergence implies that the scaled solution
L(t)2u(r,t) converges to the scaled asymptotic solution along level curves of the scaled variable y = r/L(t).)

Furthermore, the mass of u in the core is constant with
Z
R2

�u dx ¼ 2p
Z 1

0

�uðr; tÞr dr ¼ p:
In the sense of distributions, �uðr; T Þ ¼ pdðrÞ (cf. (3)). Both �u and
ffiffiffi
�u

p
are integrable over the real line R,

with the integral of �u proportional to c1/2 and the integral of
ffiffiffi
�u

p
independent of c.
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Fig. 1. The behaviour of u in the core region for varying c.
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Here, the dependence of the core width L(t) on the blow-up time (T � t) does not follow a simple expo-

nential law. The corrections to this exponential relation break the self-similarity, complicating any effort to

use self-similar blow-up numerical techniques [12].

Note that the time dependence of the core region solution (7) enters via the term c = c(t), viz., the natural
length scale
LðtÞ ¼ 1ffiffiffiffiffiffiffiffi
cðtÞ

p : ð8Þ
Furthermore, near the blow-up time (c � 1), for fixed r 6¼ 0 we have
ffiffiffi
c

p
r � 1 and
uðrÞ � 1

cr4
: ð9Þ
2.3. The outer region

Away from the core region, as t ! T, u(r,t) approaches a function u(r,T) = w(r) where w(r) is finite and

defined for all r > 0. It is shown in [2] that for r small but bounded away from zero (viz., L(t) < r� 1), as
t! T
wðrÞ ¼ w0ðrÞð1þ Oð1ÞÞ � C
expð�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=rÞ

p
Þ

r2
ð1þ Oð1ÞÞ as r ! 0; ð10Þ
where C is an appropriate constant. It is important to note that this outer region solution (10), illustrated in

Fig. 2, is time independent.

Note that wb
0 (and hence the function wb) is integrable over R only if b 6 1/2, and specifically,
Z 1

0

w0 r dr ¼ Cð1þ Oð1ÞÞ and

Z 1

0

w1=2
0 dr ¼ 4C1=2: ð11Þ
2.3.1. Matching the core and outer regions

A crucial feature of the solution behaviour is that the inner solution (7) does not match smoothly with

the outer solution w(r) at any range. Indeed, if r/L is large then the inner approximation of u is 1/cr4 (but is
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Fig. 2. The behaviour of u in the outer region where it approximates w0(r).
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time dependent). On the other hand, since log(1/r) is slowly varying for small r, the outer solution is roughly

proportional to w0ðrÞ / 1
r2 (and is time independent). Therefore, there is no match between inner and outer

solutions at any range. This is in contrast to many parabolic blow-up problems and the nonlinear Schrö-

dinger equation where the core solution evolves to a time independent function which smoothly matches

with an outer solution.
The inner and outer approximations of u(r,t) are of comparable size when r satisfies the relation
Fig. 3.

techniq

r = R =
C e�2
ffiffiffiffiffiffiffiffiffiffiffi
logð1=rÞ

p

r2
� 1

cr4
:

Rearranging, this gives
C e�
ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=r2Þ

p
r2 � K2ðT � tÞe�

ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=ðT�tÞÞ

p
:

Solving for the location of the transition r = r*(t) from the core to outer region,
r�ðtÞ � Kffiffiffiffi
C

p ðT � tÞ1=2: ð12Þ
Note that r*(t) � L(t) so that the transition occurs at a value of r which is large compared to the natural
length-scale of the core region.

In conclusion, the results of [2] imply that provided the time t is close to the blow-up time T so that the

effects of the initial conditions are small, for r < r*(t) the solution u(r,t) is well approximated by (7) and for

r*(t) < r � R by (10). For values of r of the order of R (i.e. close to the boundary), neither description will

be accurate due to the effects of the boundary terms.

For illustration, in Fig. 3, we show a snapshot of the actual solution of (1) computed using the numerical

method described in the next section and terminating when c = 1.578 · 1021, together with its inner and out-

er solution approximations. For this case the inner and outer solution approximations coalesce near
r* = 1.27 · 10�9 given by (12). As can be observed from the figure, the inner and outer solutions closely

match the actual solution except near r = R = 1 where the asymptotic formulae break down due to the effect

of the boundary conditions.
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Typical behaviour of u(r,t) near the blow-up time T computed from numerical integration of (1) using an adaptive mesh

ue (see below). The solution is well approximated by �u in the inner region and by w0 in the outer region away from the boundary

1.
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3. Numerical evidence for the blow-up asymptotics in [2]

3.1. The numerical method

As remarked, it is not clear whether the asymptotic description of the solution given in [2,11] and
the previous section describes the behaviour for general initial data. A first objective here is to give

some numerical support to the conjecture that this asymptotic description represents an attracting solu-

tion for a significant set of initial data. The numerical challenge is severe. To compare the approxi-

mately self-similar asymptotic description given in [2] with a true self-similar formula it is necessary

to compute the solution to the point at which the error terms in the asymptotic formulae of the form

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðT � tÞ

p
are small. To do this it is necessary to compute solutions which are very large (of the

order of 1022) and which evolve on very small length scales (of the order of 10�11). To perform such

numerical computations it is essential to use an adaptive procedure in which mesh points are clustered
close to the region where the singularity develops. There are various procedures for doing this, includ-

ing h-refinement where mesh points are successively added in the singular region and r-refinement where

a (fixed) number of mesh points are moved into the region. Following the success of the methods for

parabolic blow-up described in [12], we consider an r-refinement method where the mesh points evolve

according to a moving mesh PDEs (MMPDE).

We solve the system (1) in a radially symmetric setting (i.e., effectively integrating a system of equa-

tions in 1D) using MOVCOL [13], a moving method of lines code based upon a moving collocation

method. The physical PDEs are discretised in space on a non-uniform mesh with a cubic Hermite col-
location-type method, and the MMPDEs are discretised in computational space with a 3-point finite

difference method.

The resulting system of ODEs is integrated with the code DASSL [26] which is designed to solve stiff

differential-algebraic equations (DAEs) of the form g(t,y,dy/dt) = 0 by combining variable order backward

differentiation algorithms with the numerical linear algebra routines from LINPACK [27].

More specifically, the (moving) mesh points are Xi(t) = X(i/N,t) 2 [0,R] where X(n,t) is a transformation

from a fixed computational coordinate n to the moving frame. The function X(n,t) evolves during the cal-

culation to cluster the mesh points close to the singularity, and the basic adaptive method involves solving
the physical PDE and an MMPDE for X(n,t). For each time level t we compute a coordinate transforma-

tion X(n,t):[0,1] ! [0,R]. The standard criterion for computing X(n,t) in one dimension is the equidistribu-

tion of a monitor function M(r,t) = M(u(r,t)) measuring the difficulty in describing the solution u at (r,t)

(i.e., where more mesh points are needed to smoothly extrapolate the solution). Typical choices of monitor

function involve a combination of the size of the solution and its steepness. The equidistribution of the

monitor function in integral form reads
Z X

0

MðuÞ dr ¼ n
Z R

0

MðuÞ dr ð13Þ
and its differential form
ðMðuÞX nÞn ¼ 0: ð14Þ
With the MMPDE approach, one does not try to solve (14) exactly. There are a variety of choices for the

time dependent MMPDE which one solves instead, and for much the same reasons as in [12] (see below) we

use MMPDE6 [14,15], which is
�X nnt ¼
1

s
ðMðuÞX nÞn: ð15Þ
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In practice, there are several advantages of not solving (14) exactly, viz., (a) a simple initial mesh such as

a uniform one can often be chosen, (b) more stable meshes with reduced risk of mesh crossings are gener-

ated, and (c) the possibility of over-concentrating points in the singular regions and depleting the mesh

points elsewhere is reduced.

MOVCOL numerically integrates the discrete collocations equations for the PDEs (1) expressed in the
mesh coordinates and the discrete finite difference equations for (15) simultaneously [13]. Roughly speaking,

the method works by suitably choosing M to be large at points where the solution has a singular form. The

advantage of the formulation (15) is that M can be chosen to balance the temporal and spatial scalings of

the solution.

The resulting process evolves the solution and the mesh on a combined manifold corresponding to an

equidistributed solution/mesh.

If equidistribution is enforced too rigidly then DASSL warns that the resulting equations are very stiff.

Stiffness generally indicates a wide difference in time scales for the equations being integrated, and short
time steps chosen due to the presence of the shorter time scales prevents efficiently following the solution

in the longer ones, particularly when the short time scales describe transient effects which become unimpor-

tant [28]. For the chemotaxis system studied here, this stiffness difficulty has turned out to be problematic,

causing the solution process to slow down and even freeze. A study of the precise cause of this stiffness and

its effect for a code like DASSL which is designed to efficiently handle stiff problems, while an important

practical matter to pursue in understanding the general MMPDE approach, lies outside the scope of this

paper and requires further investigation.

On the other hand, if equidistribution is enforced too weakly (e.g., if the mesh evolves too slowly) then
the mesh will not adapt quickly enough to the solution and resolution will be lost (as there is insufficient

adaptivity to resolve the blow-up). With an optimal �scale invariant� method the rate at which the solution

evolves onto the equidistribution manifold is of the same order as the overall rate of evolution of the solu-

tion. Choosing the monitor function correctly, the MMPDE scales properly and the problems with stiffness

in the solution are avoided. We see later that an optimal choice of monitor function M from the joint per-

spectives of mesh regularity and overall ease of computation is
MðuÞ ¼ u1=2: ð16Þ
In the next section we will return to the motivation for this choice of monitor function.

3.2. Initial conditions and other numerical parameters

We briefly summarise the numerical results obtained when solving (1) using MOVCOL (with double pre-

cision) and (16). These results are all consistent with the asymptotic analysis of [2]. For all our computa-

tions we take the Gaussian initial data
uðr; 0Þ ¼ 1000e�500r2 ;

vðr; 0Þ ¼ 10e�500r2 ;
over the domain [0,1].

This leads to solutions which become singular in a finite time T (T � 5.15 · 10�5).
For the 2D computations, the particular choice of initial conditions is not crucial to test the asympt-

otics, provided that the initial mass of u is large enough to drive blow-up [29,30]. However, the blow-up

time T depends dramatically on the specific choice of initial conditions. An almost flat initial configu-

ration leads to a considerable increase of the blow-up time while maintaining the asymptotic form of

the solution.
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Interestingly, in 3D blow-up will occur regardless of the initial mass. However, the type of blow-up does

depend on the initial configuration, and blow-up can occur in a self-similar manner or in a way which cor-

responds to imploding ring-waves [23].

We typically use fewer than 250 mesh points, smoothing parameter s = 10�10 and no spatial smoothing

with a moving mesh method of the form MMPDE6 (15) (see [14,15] for details).
The computations are performed on a Linux platform with a Xeon 2.2 GHz processor and 1 Mb RAM.

Typical computations take approximatively 40 CPU seconds (10 s for initial setup and initial equidistrib-

uted mesh, and 30 s for the remainder of the run until collapse of the solution induces a stepsize error in the

differential algebraic equation solver due to stiffness).

As a check of the accuracy of the numerical computation, during the run we compute the mass of the

solution u(r,t) as given by (2). We can then verify that it is conserved to within some tolerance level. Indeed,

even for times very close to blow-up the error in the mass, with respect to the initial mass, is found to be

smaller than 0.7%.
Fig. 4 depicts the time evolution of u(x,t) for a typical run using the above setup.
3.3. Calculation of the blow-up time T

The blow-up time T is estimated to high precision by computing until u(0,t*) � 1021 and approximating

T by t*. As an indicator of the validity of the numerical results we compare the computed blow-up time T as

a function of the number of mesh points N (see Fig. 5). For the wide range of N values we consider, the

blow-up time remains relatively constant: 5.115 · 10�5 < T < 5.118 · 10�5, i.e., a variation of approxima-
tively 0.05% (for 300 < N < 700 the variation is approximatively 0.01%). Obtaining consistency can be a

source of some numerical difficultly, e.g. in Fig. 13 of [1] T appears to vary logarithmically as a function

of N.
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Fig. 4. Time evolution of blow-up solutions using the moving mesh method. From bottom to top: T � t � T (initial condition t = 0),

1.85 · 10�6, 1.53 · 10�9, 1.07 · 10�12, 5.67 · 10�16, 2.98 · 10�19. Here, Blow-up time is approximately T = 0.51174514141272323369

· 10�4.
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Fig. 5. Blow-up time T as a function of the number of mesh points N used for the moving mesh method.
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3.4. Temporal behaviour of u(0,t)

From (4), we have that
T � t ¼ ðK2uð0; tÞÞ�1=ð1þ2aÞð1þ OðlogðsÞ=
ffiffiffi
s

p
Þ; with s ¼ � logðT � tÞ
or similarly that
uð0; tÞ ¼
~K

ðT � tÞ1þ2a ð1þ OðlogðsÞ=
ffiffiffi
s

p
Þ; ð17Þ
with ~K ¼ 1=K2, so that if (4) represents the true asymptotic behaviour then
uð0; tÞðT � tÞe
ffiffi
2

p
ð� logðT�tÞÞ�

1
2 ! ~K as t ! T : ð18Þ
The formulae (17) and (18) only become asymptotically sharp when log(u(0,t)) is large so that 1=
ffiffiffi
s

p
is

small. This imposes a severe restriction on the numerical method, which is required to compute very large

solutions. Unfortunately, the numerical calculations become dominated by rounding (and other) errors

when u is too large and when (T � t) is too small. We find our numerical calculations to be reliable and

the asymptotic formulae observable for 10�20 < (T � t) < 10�5. Over this range, a given in (17) varies from

approximately 0.1–0.2 (cf. Fig. 6).

It should be emphasised that this is a relatively small variation given that the other terms in (17) are

changing by more than ten orders of magnitude, making it very hard to distinguish between the logarithmic

law (18) and a power law, although both can be distinguished from a self-similar type of evolution with
a = 0. A representative value of a over this range, say
a ¼ 0:15; ð19Þ

appears to be a reasonable approximation to use, leading to approximately power law behaviour
uð0; tÞ �
~K

ðT � tÞ1:3
:

The growth in u(0,t) predicted by this analysis is compared with the numerical results from calculating

u(0,t) in Fig. 7, where we plot log(u(0,t)) against log(T � t). Here, T is first estimated to high precision using

the procedure described above. We show the results for both a 2D domain (d = 2) with M(u) = u1/2 and a
3D domain (d = 3) with M(u) = u. (The choice of M is justified in the next section). For d = 3 the solution
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has a true self-similar form with u(0,t) � (T � t)�1, and since the difference between approximate and true

self-similar behaviour is more easily determined, we can be reasonably sure that we are not observing a

numerical artifact.

Over the range of values of (T � t) for which there are both reliable numerical computations and sharp

asymptotic results, both of the curves in Fig. 7 are close to straight lines. For the 2D case this is due to the

slow variation in a over this range, where the line has a gradient close to �1.2. This corresponds to a power

law of (1 + 2a) and is consistent with a value of a between 0.1 and 0.15.

For the 3D case, the line has the �self-similar� gradient of �1, consistent with the growth of the approx-
imate self-similar solution. For the non-self-similar solutions corresponding to imploding shock waves,

analysed in [23], an argument is given which suggests that they are stable. Investigations employing the

numerical techniques described in this manuscript are currently underway in [31] to examine this issue.
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3.5. Spatial structure of u(r,t)

As a second test of the asymptotic formulae, we examine the spatial structure of u(r,t), viz., how the nat-

ural length scale L(t) varies with (T � t). Following [1], we estimate L(t) from the numerical computations

by finding the value of r at which u(r,t) = u(0,t)/5. According to (7) this occurs asymptotically when
r ¼ LðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

p
� 1

p
. From (5), we expect to see
Fig. 8.

T � t.

obtain
Lffiffiffiffiffiffiffiffiffiffiffi
T � t

p ¼ KðT � tÞa 1þ O
logðsÞffiffiffi

s
p

� �� �
:

In Fig. 8, we present two calculations to support the above estimate. In the top of the two figures we plot

L as a function of (T � t). This graph clearly indicates that L scales in a manner close to
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
. More

careful analysis of this calculation is given in the bottom plot where L=
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
is plotted as a function of

T � t. Here we see that L=
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
is not constant but is slowly varying. The solid line on this graph gives

the correction term K(T � t)a as predicted by Herrero and Velázquez [2]. It is evident that the numerical

results approach this term as (T � t) ! 0. Over the range of values plotted on the graph, s = �log(T � t)

varies from about 11 to 40, so that the value of the error bound logðsÞ=
ffiffiffi
s

p
varies from 0.72 to 0.57. The

good convergence of the numerical scheme indicates that this error bound may not be optimal. Self-similar

blow-up for a = 0 would correspond to L /
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
which is certainly not observed.
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ed using moving mesh method, and solid lines correspond to non-self-similar asymptotics predicted in [2].
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It is crucial to use a reliable integration technique in order to observe the proper solution asymptotics. In

[1] a second-order finite-difference method in space with adaptive time and mesh refinement is used to com-

pute a similar graph to the above, where their mesh refinement is implemented such that mesh points are

drawn into the inner core whenever the maximum density increases by 1%. Even using this mesh refinement

method, though, there is difficulty detecting the logarithmic correction of the a exponent in (5) as in this
paper their numerical estimates of L=

ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
approach a constant value near blow-up – so that the charac-

teristic length L appears to behave in a self-similar manner. Well aware of the numerical difficulties in

detecting the logarithmic corrections for approximately self-similar blow-up, they left the numerical verifi-

cation of the solution in [2] as an open problem (see also [11]). We are able to capture the logarithmic cor-

rection with a suitable choice of the monitor function for our moving mesh method, and below we see the

effect of various choices of monitor functions.
4. Mesh calculation

4.1. Form of monitor function

To analyse the remeshing procedure using MMPDE6 to solve the 2D and 3D chemotaxis problem (1),

we look first at mesh regularity and then at the ease of solution of the resulting system of ODEs for the

optimal monitor functions. Using the results of [2], we estimate the analytic form of the mesh and compare

the resulting meshes with numerically computed ones.
When updating the mesh close to the collapse time it is essential that the mesh points do not move too

fast; otherwise, the resulting system of equations is very stiff. Nevertheless, the mesh points must not move

too slowly or they will not track the singularity. Ideally, they should evolve at the same rate as the under-

lying solution. To achieve this balance, the monitor function must scale correctly in a temporal sense. Spe-

cifically, if l is a natural time scale and L a natural length scale then the left hand side of MMPDE6 scales

as L/l and the right-hand side as LM, so they balance if M � 1/l. As collapse is approached, a natural time

scale for the formation of the singularity is l = (T � t). Hence, to evolve the mesh points at the correct time-

scale, the monitor function M must satisfy the identity
MðuÞ ¼ ðT � tÞ�1
:

For the chemotaxis problem this can be achieved if we use monitor functions of the form
MðuÞ ¼ ub � u1=ð1þ2aÞ: ð20Þ

These functions both have good scaling properties and are easy to use during the computations. Taking

a = 0.5 in (20) leads to the estimate b = 0.5, so that
MðuÞ ¼ u1=2: ð21Þ

We see later that this choice leads to a robust method.

If in contrast we take a = 0.15, determined previously as being a good approximation over the asymp-

totic range, then
MðuÞ ¼ u0:77: ð22Þ

We find later that while it does place the mesh points correctly, it tends to lead to stiff equations in the

initial phase of mesh placement.

As a is slowly decreasing, we have b P 1/2 and asymptotically b = 1. The latter choice gives
MðuÞ ¼ u; ð23Þ

which is appropriate for numerically capturing the solution evolution for problems in 3D.
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4.2. Mesh evolution for M ¼ Aþ u
1
2

To construct a mesh distribution process such that both (a) the mesh adapts to the solution blow-up

behaviour and (b) there are a sufficient number of mesh points in both the core and outer regions, we follow

[32] and instead of (20) use a regularised monitor function given by
MðuÞ ¼ Aþ ub; A; b P 0: ð24Þ

The constant A is insignificant close to the singularity and allows for a more uniform distribution of

mesh points near the boundary. In this subsection we analyse the case b = 1/2, which is essentially optimal
in striking a balance between satisfying criterion (b) and giving non-stiff mesh equations. While not quite

optimal in resolving the singularity, it still does fairly well over the asymptotic range. In our analysis we

shall assume that the mesh is perfectly equidistributed.

4.2.1. Calculating the right hand side of (13)

The right hand side of the integral in (13) in this case is
n ARþ
Z R

0

u1=2 dr
� �

:

To evaluate this integral we consider the two expressions for u over the core and outer regions.

4.2.1.1. The core region. Here u is scale-invariant and from (7) evolves in the manner
uðr; tÞ ¼ 1

L2
�u

r
L

� �
; L2 ¼ 1=c; c ¼ uð0; tÞ:
Comparing �u with w0 it is reasonable from (12) to assume that the inner (core) region can be extended to

the point
r� ¼ Kffiffiffi
c

p ;
where K is taken to be large. Using the expression for u in the core region we then have
Z r�

0

Aþ u1=2
� 	

dr ¼ Ar� þ
Z r�

0

1

L
dr

1þ r2=L2

� �
¼ Ar� þ tan�1 r�

L

� �
! AL� þ p

2
as K ! 1: ð25Þ
4.2.1.2. The outer region. Here u(r) is well approximated by w(r) when r is small. Since w1/2 is integrable, for

some constant D
Z R

L�
Aþ u1=2 dr � AðR� L�Þ þ

Z R

0

w1=2 dr � AðR� L�Þ þ D:
Combining these results, we conclude that regardless of the level of blow-up and size of L(t), in the sin-
gular limit the right hand side of (13) simply evolves towards a constant, viz., we have approximately
Z R

0

M dr ¼ ARþ p
2
þ D: ð26Þ
4.2.2. Calculating location of mesh points

The second mesh criterion consists of roughly distributing the mesh points equally between

the core and outer regions: we call it the ‘‘50:50 condition’’. This condition must be satisfied
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to give a smooth and more regular mesh. We can gauge the mesh by how well this condition is

satisfied.

We again consider the core and outer regions separately.
4.2.2.1. The mesh in the core region. From (13) and (26), in the core region
Z X

0

M dr ¼ AX þ tan�1ðX=LÞ ¼ nðARþ p=2þ DÞ:
In the case A = 0 this gives
X ðn; tÞ ¼ LðtÞ tanðnðp=2þ DÞÞ; ð27Þ

provided that
nðp=2þ DÞ < p=2 so that n < 1=ð1þ 2D=pÞ: ð28Þ

From (27), the meshing procedure thus places 1/(1 + 2D/p) of the mesh points within the core region at a

spacing proportional to L. As n ! 1/(1 + 2D/p), we have X/L ! 1, implying that the mesh points leave the

core region at this point.
4.2.2.2. The mesh in the outer region. Assuming that X/L is large but that X itself is small, from (26) we have
Z X

0

M dr ¼ AX þ p=2þ
Z X

0

w1=2ðrÞ dr ¼ nðARþ p=2þ DÞ:
Approximating w(r) for small r by wðrÞ � w0ðrÞ ¼ C e�2
ffiffiffiffiffiffiffiffiffiffiffi
logð1=rÞ

p
=r2, for small X we thus have
sðX Þ þ AX þ p=2 ¼ nðARþ p=2þ DÞ; ð29Þ

where
sðX Þ �
Z X

0

w1=2
0 ðrÞ dr ¼ 2

ffiffiffiffi
C

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=X Þ

p
þ 1

h i
e�

ffiffiffiffiffiffiffiffiffiffiffiffi
logð1=X Þ

p
: ð30Þ
Examining this mesh for A = 0, if we assume that the asymptotic description of w(r) � w0(r) remains va-

lid up to r = R then
D ¼
Z R

0

w1=2 dr �
Z R

0

w1=2
0 dr ¼ sðRÞ; ð31Þ
so that
sðX Þ þ p=2 � n p=2þ Dð Þ so that sðX Þ ¼ p
2

n 1þ 2D
p

� �
� 1

� �
: ð32Þ
The function s(X) is monotone increasing and tends to 0 as X! 0. Thus, the mesh points only lie in the

outer region if n > 1/(1 + 2D/p), which is consistent with the earlier calculation.

We summarise these results in the following lemma.

Lemma 1. Using M(u) = u1/2 in MMPDE6, (i) the core region is described by the values of the computational

variable for which n < 1/(1 + 2D/p). In this region
X ðn; tÞ=L ¼ X ðn; tÞuð0; tÞ1=2 ¼ tanðnðp=2þ DÞÞ;
where D is a constant. (ii) The outer region is described by values of the computational variable for which n > 1/

(1 + 2D/p). In this region
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sðX Þ ¼ p
2

n 1þ 2D
p

� �
� 1

� �
;

with s(X) given by (30).

Note that regardless of the value of T � t, a fixed proportion of the mesh points are placed in the core

region, so the 50:50 condition is satisfied.

In Fig. 9, we plot the computed scaled mesh in the core region. It is clear that X/L becomes unbounded

around n = 1/(1 + 2D/p) = 0.3242. We estimate D by approximating
R R
0
MðrÞdr and plot the analytic core

mesh predicted from (27). For the resulting approximation D = 3.274 shown in Fig. 9, we see good agree-

ment between these two meshes.
In Fig. 10, we compare the computed mesh X(n) in the outer region with the analytic mesh determined

using the above value of D. Observe that X! 0 as n decreases towards n = 0.32, which is consistent with

the core region calculation. This shows the good agreement between the mesh in the outer region calculated

using MMPDE6 and the outer region approximation (32).

A plot comparing the computed mesh and the predicted mesh over the whole interval is given in Fig. 11.

Here the change between the core and the outer region is very clear. Overall the analytic approximation of

the mesh is very good away from the boundary at r = R = 1.
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4.3. Mesh evolution for M = A + ub, b > 0

Consider the class of general monitor functionsM = A + ub for b > 0. Defining I1(X) as the integral of u
b

in the core region,
I1ðX Þ ¼
Z X

0

ub dr ¼
Z X

0

1

L2b �uðr=LÞ
b
dr ¼ 1

L2b�1

Z X=L

0

�uðyÞb dy: ð33Þ
If b > 1/4 then �ub is integrable over R, in which case this inner integral tends towards
I1ð1Þ ¼ N

LðtÞ2b�1
for an appropriate constant N. This implies the following.

Lemma 2. (a) If 1/4 < b < 1/2 then I1(1) ! 0 as L(t) ! 0. (b) If b > 1/2 then I1(1) ! 1 as L(t) ! 0.

The contribution to the total integral in (13) from the outer region has the form
I2 ¼
Z R

L
wb dr �

Z 1

L

Cb e�2b
ffiffiffiffiffiffiffiffiffiffiffi
logð1=rÞ

p

r2b
dr:
So if b < 1/2, I2 is both finite and bounded away from 0 as L(t)! 0, say I2 = E. If b > 1/2, I2 scales as

L(t)1�2b, and the contribution to the overall integral from the outer region is simply proportional to the

contribution from the core region. We have
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Lemma 3. (a) If b < 1/2 then I1(1)/I2 ! 0 as L(t) ! 0. (b) If b > 1/2 then I1(1)/I2 ! H as L(t) ! 0, where

H is a constant.
4.3.1. The case b < 1/2

In this case, it follows from (33) that
Z 1

0

MðuÞdr ¼ L1�2bF ð1Þ þ E;
where F ðyÞ ¼
R y
0
�ub dy. In the core region the mesh is given by solving the equation
L1�2bF ðX=LÞ ¼ nðL1�2bF ð1Þ þ EÞ;
so that
F ðX=LÞ ¼ nðF ð1Þ þ L2b�1EÞ:
This expression is valid only if
nðF ð1Þ þ L2b�1EÞ < F ð1Þ;
giving
n <
1

1þ L2b�1E=F ð1Þ
� F ð1Þ

E
L1�2b:
We see that as L ! 0 the proportion of mesh points placed in the core region becomes vanishingly small.

Hence, the mesh will freeze and the solution will not be well resolved. In practice, the method does not be-

have too badly in the initial stages of the evolution, but for large values of u the whole system has spurious

oscillations.
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4.3.2. The case b > 1/2

The integral in the core scales as L1�2b, and the integral in the outer region scales in exactly the same

way. As a consequence, we obtain a 50:50 mesh for values of b P 1/2. The analysis for the mesh location

is then similar to that in the last subsection.

4.4. Solution of resulting ODEs

To be most effective the computed mesh should have the 50:50 property and scale well with time. We

have shown that the monitor function ub has the first property provided that b P 1/2. However, in order

for the mesh to scale asymptotically with time the proper choice for b is b = 1/(1 + 2a).
We investigate the effect of using the general form for the monitor function (24) in the moving mesh

equation (15) in the case A = 0 for simplicity, where MMPDE6 becomes
�X nnt ¼
1

s
ðubX nÞn: ð34Þ
From (17), at the solution�s maximum value
uð0; tÞb ¼ 1

LðtÞb
¼

~K
b

ðT � tÞbð1þ2aÞ :
The natural time-scale for the evolution of the whole system, viz., the amount of time before blow-up

occurs, is 1/(T � t), and hence relative to the natural time-scale the right hand side of (34) has magnitude
1

s
ðT � tÞbð1þ2aÞ�1

:

If b(1 + 2a) � 1 then the mesh achieves the goal of evolving at the same rate as the solution. If

b(1 + 2a) > 1 then the mesh evolves more rapidly than the solution, and the ODEs for the mesh evolution

are stiff. In the early stages of the system evolution, a takes larger values than later on. Thus, if b is too large

initially then the mesh ODEs will be too stiff to solve easily. Of the values of b that give 50:50 meshes, b = 1/

2 leads to the least stiff equations and is in this respect an optimal choice.
Fig. 12 shows a series of double precision calculations of u using M = A + jujb. The top and bottom plots

depict the maximum height of the solution u(x,t) before the numerics break down, as a function of b and A

for A = 1 and b = 0.5, respectively. This maximum value gives a crude measure of the robustness of the

numerical scheme. In the figure the circles correspond to break down of the computations caused by a lack

of points in the core region, which produces time-oscillations in the height of the aggregate. In contrast, the

crosses correspond to a break down of the computations due to stiffness of the time integration procedure

causing a halt (failure to converge with the prescribed accuracy) in the differential algebraic system solver

DASSL [26]. It is clear that b = 1/2 gives the best results, at least for the early and intermediate stages of the
computations. Interestingly, although taking A > 0 leads to a smoother mesh close to the boundary at

r = R, it leads to less robust computation.

More specifically, for A close to zero there are enough points in the core region but eventually the nume-

rics break down because DASSL indicates that the equations have become too stiff. On the other hand, for

larger A there are not enough points kept in the core region so that the loss of resolution triggers time-

oscillations of the solution (see Fig. 15).

4.5. Choice of s

Whilst the value b = 1/2 is optimal when the solution is large enough (a < 1/2), the mesh asymptotically

evolves more slowly than the solution. This effect can be somewhat mollified by using appropriate values
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solution u(x,t) before the computation breaks down. Top: umax as a function of b for A = 1. Bottom: umax as a function of A for b = 0.5.

The numerics break down due to depletion of mesh points in the core region (circles) or due to stiffness (crosses).
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of s in this range. Specifically, if (17) holds then the mesh will evolve at the correct time scale provided

that
s ¼ ðT � tÞ1=2�a
: ð35Þ
From the definition of a, logðT � tÞ ¼ � 1
2a2, so eliminating (T � t) from (34) and (17), we have

a2 logðsÞ ¼ ða� 1=2Þ=2 and a2 logðuð0; tÞÞ ¼ logð~KÞa2 þ ð1þ 2aÞ=2. Since logð~KÞ should be close to zero
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Fig. 13. The variation of log(s) as a function of log(u(0)) to give a mesh which evolves smoothly.
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and a ! 0, it is reasonable to ignore the ~K term. Using these relationships, log(s) as a function of log(u(0,t))

is plotted in Fig. 13. Asymptotically, for large u(0,t) we then have
Fig. 14

for i =
� logðsÞ � 1

2
logðuÞ �

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
logðuÞ

p
þ 1þ O 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
logðuÞ

p� �
:

For example, with b = 1/2 we can successfully integrate until u(0,t) = 1016 provided that we take s = 10�5

(see dashed lines in Fig. 13).

In the numerics presented in the previous sections, we used s = 10�10 allowing a correct time scale for

u(0,t) up to � 030 – this is well beyond the typical break down of our numerics at u(0,t) � 1021.
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5. Calculation of dynamic mesh location

To illustrate the results of the previous section, we solve the chemotaxis problem (1) using (15) with

s = 10�5 and M(u) = ub for b = 0.25, 0.5, and 0.77. In Fig. 14, we plot log(Xi) as a function of log(T � t)

for these three cases.
For b = 0.25 the mesh evolves slowly, and early on it ceases evolving altogether, with the first mesh point

placed at 10�3. The natural length scale of the problem is given by L(t) = (T � t)0.5 + a � (T � t)0.65. If

(T � t) � 10�6 all resolution is lost and oscillations in the computed solution occur due to an insufficient

resolution of the peak (cf. Fig. 12). An example of the oscillations induced by the loss of resolution at

the core is depicted in Fig. 15. Efforts are currently underway to analyse the mechanism behind these

oscillations.

For b = 0.5 the mesh points evolve rapidly and stay close to the natural length scale until (T � t) � 10�9.

For smaller values of (T � t) some mesh points cease to evolve, although those closest to the core region
continue to evolve at the correct rate until (T � t) � 10�13. We can compare this with the estimate of s
in (35) for the proper mesh evolution: If a = 0.15, the mesh ceases to evolve for s = 10�5 when

(T � t) � 10�14, which is more or less consistent with the above observations. At the final value of

(T � t) there is a very large variation between the smallest (�10�12) and the largest mesh spacings (�10�2).

As predicted, for b = 0.77 the mesh evolves very rapidly initially and then closely follows the natural

length scale. However, the MMPDE calculation is very stiff, and features of the solution away from the

singularity are not as well resolved.
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Fig. 15. Typical oscillations of the aggregate caused by loss of resolution at the core. The top panel displays maximum cell density

u(0,t) as a function of time. As time approaches T, cell density grows rapidly and then exhibits spurious oscillations. The bottom panel

displays a series of snapshots for density profile just before blow-up (t1 < t2 < T), very close to blow-up time (t3 � T), and just after

blow-up (T < t4 < t5).
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6. Conclusion

We have described an adaptive numerical method which can be designed to resolve difficulties associated

with solutions of blow-up problems for reaction diffusion equations. The method can be used for general

systems of PDEs, and for the chemotaxis problem considered here we solve the full system (1) directly.
In 2D, the radially symmetric solution to this problem, analysed in [2], is approximately self-similar, and

capturing the fine details numerically requires very accurate computation of the solution very close to blow-

up. There is considerable sensitivity inherent in this calculation, and in fact, in [1], facing numerical diffi-

culties, the authors left this problem as one requiring further study. However, the method we develop in

this paper appears ideally suited to reaction-diffusion equations of this type.

A key to the success of our MMPDE approach is the ability to build scale-invariance into the adaptive

remeshing procedure. Even so, there are difficulties with the 2D problem, and careful analysis to determine

a suitable monitor function is essential. Indeed, this problem illustrates the growing importance of the close
interplay between analysis and computation necessary to resolve fine solution structure (in this case, char-

acterised by the log(T � t) term in the asymptotic solution form).

It appears that this problem is also an important one physically, since chemotaxis can take place along

surfaces or, e.g., air–water interfaces [17], and these have 2D problem features. Finally, we note that in the

3D problem there is also a set of stable non self-similar blow-up profiles which are not concentrated at the

origin and have a ring like structure [23]. We are in the process of investigating these ring type solutions

numerically [31].
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